
Package index
Main functions
Functions for general purpose optimization, with support for parallel computation of derivatives.
-
calibrate() - Sequential parameter estimation for the calibration of complex models
-
optim2() - General-purpose optimization with parallel numerical gradient computation
-
optimh() - General-purpose optimization using heuristic algorithms
-
ahres() - Adaptative Hierarchical Recombination Evolutionary Strategy (AHR-ES) for derivative-free and black-box optimization
-
gradient() - Numerical computation of the gradient, with parallel capabilities
-
calibrar-packagecalibrar - Automated Calibration for Complex Models
Setting up a calibration
Functions to easily setup a new calibration for a complex model, from an R function running the model.
-
calibration_data() - Get observed data for the calibration of a model
-
calibration_objFn() - Create an objective function to be used with optimization routines
-
calibration_setup() - Get information to run a calibration using the
calibrarpackage.
-
calibrar_demo() - Demos for the calibrar package
-
gaussian_kernel() - Calculate a discretization of the 2D Gaussian Kernel
-
spline_par() - Predict time-varying parameters using splines.
-
sphereN() - Sphere function with random noise
-
.get_command_argument() - Get an specific argument from the command line
-
.read_configuration() - Read a configuration file.
-
getObservedData()getCalibrationInfo()createObjectiveFunction() - Defunct functions in package calibrar.