
Package index
Main functions
Functions for general purpose optimization, with support for parallel computation of derivatives.
-
calibrate()
- Sequential parameter estimation for the calibration of complex models
-
optim2()
- General-purpose optimization with parallel numerical gradient computation
-
optimh()
- General-purpose optimization using heuristic algorithms
-
ahres()
- Adaptative Hierarchical Recombination Evolutionary Strategy (AHR-ES) for derivative-free and black-box optimization
-
gradient()
- Numerical computation of the gradient, with parallel capabilities
-
calibrar-package
calibrar
- Automated Calibration for Complex Models
Setting up a calibration
Functions to easily setup a new calibration for a complex model, from an R function running the model.
-
calibration_data()
- Get observed data for the calibration of a model
-
calibration_objFn()
- Create an objective function to be used with optimization routines
-
calibration_setup()
- Get information to run a calibration using the
calibrar
package.
-
calibrar_demo()
- Demos for the calibrar package
-
gaussian_kernel()
- Calculate a discretization of the 2D Gaussian Kernel
-
spline_par()
- Predict time-varying parameters using splines.
-
sphereN()
- Sphere function with random noise
-
.get_command_argument()
- Get an specific argument from the command line
-
.read_configuration()
- Read a configuration file.
-
getObservedData()
getCalibrationInfo()
createObjectiveFunction()
- Defunct functions in package calibrar.