Skip to contents

Main functions

Functions for general purpose optimization, with support for parallel computation of derivatives.

calibrate()
Sequential parameter estimation for the calibration of complex models
optim2()
General-purpose optimization with parallel numerical gradient computation
optimh()
General-purpose optimization using heuristic algorithms
ahres()
Adaptative Hierarchical Recombination Evolutionary Strategy (AHR-ES) for derivative-free and black-box optimization
gradient()
Numerical computation of the gradient, with parallel capabilities
calibrar-package calibrar
Automated Calibration for Complex Models

Setting up a calibration

Functions to easily setup a new calibration for a complex model, from an R function running the model.

calibration_data()
Get observed data for the calibration of a model
calibration_objFn()
Create an objective function to be used with optimization routines
calibration_setup()
Get information to run a calibration using the calibrar package.
objFn() fitness()
Calcuted error measure between observed and simulated data
calibrar_demo()
Demos for the calibrar package

Parameter modelling

Functions to easily parametrize a model.

gaussian_kernel()
Calculate a discretization of the 2D Gaussian Kernel
spline_par()
Predict time-varying parameters using splines.

Test optimization functions

sphereN()
Sphere function with random noise

Auxiliar functions

.get_command_argument()
Get an specific argument from the command line
.read_configuration()
Read a configuration file.

Defunct functions

getObservedData() getCalibrationInfo() createObjectiveFunction()
Defunct functions in package calibrar.