Main functions

Functions for general purpose optimization, with support for parallel computation of derivatives.

calibrate()

Sequential parameter estimation for the calibration of complex models

optim2()

General-purpose optimization with parallel numerical gradient computation

optimh()

General-purpose optimization using heuristic algorithms

ahres()

Adaptative Hierarchical Recombination Evolutionary Strategy (AHR-ES) for derivative-free and black-box optimization

gradient()

Numerical computation of the gradient, with parallel capabilities

calibrar-package calibrar

Automated Calibration for Complex Models

Setting up a calibration

Functions to easily setup a new calibration for a complex model, from an R function running the model.

calibration_data()

Get observed data for the calibration of a model

calibration_objFn()

Create an objective function to be used with optimization routines

calibration_setup()

Get information to run a calibration using the calibrar package.

objFn() fitness()

Calcuted error measure between observed and simulated data

calibrar_demo()

Demos for the calibrar package

Parameter modelling

Functions to easily parametrize a model.

gaussian_kernel()

Calculate a discretization of the 2D Gaussian Kernel

spline_par()

Predict time-varying parameters using splines.

Test optimization functions

sphereN()

Sphere function with random noise

Auxiliar functions

.get_command_argument()

Get an specific argument from the command line

.read_configuration()

Read a configuration file.

Defunct functions

getObservedData() getCalibrationInfo() createObjectiveFunction()

Defunct functions in package calibrar.